Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 839
Filtrar
1.
bioRxiv ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38562826

RESUMO

Transcribed Ultra-Conserved Regions (TUCRs) represent a severely understudied class of putative non-coding RNAs (ncRNAs) that are 100% conserved across multiple species. We performed the first-ever analysis of TUCRs in glioblastoma (GBM) and low-grade gliomas (LGG). We leveraged large human datasets to identify the genomic locations, chromatin accessibility, transcription, differential expression, correlation with survival, and predicted functions of all 481 TUCRs, and identified TUCRs that are relevant to glioma biology. Of these, we investigated the expression, function, and mechanism of action of the most highly upregulated intergenic TUCR, uc.110, identifying it as a new oncogene. Uc.110 was highly overexpressed in GBM and LGG, where it promoted malignancy and tumor growth. Uc.110 activated the WNT pathway by upregulating the expression of membrane frizzled-related protein (MFRP), by sponging the tumor suppressor microRNA miR-544. This pioneering study shows important roles for TUCRs in gliomas and provides an extensive database and novel methods for future TUCR research.

2.
Indian J Tuberc ; 71(2): 204-212, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38589125

RESUMO

Mycobacterium tuberculosis (Mtb) employs several sophisticated strategies to evade host immunity and facilitate its intracellular survival. One of them is the epigenetic manipulation of host chromatin by three strategies i.e., DNA methylation, histone modifications and miRNA involvement. A host-directed therapeutic can be an attractive approach that targets these host epigenetics or gene regulations and circumvent manipulation of host cell machinery by Mtb. Given the complexity of the nature of intracellular infection by Mtb, there are challenges in identifying the important host proteins, non-coding RNA or the secretory proteins of Mtb itself that directly or indirectly bring upon the epigenetic modifications in the host chromatin. Equally challenging is developing the methods of targeting these epigenetic factors through chemical or non-chemical approaches as host-directed therapeutics. The current review article briefly summarizes several of the epigenetic factors that serve to bring upon potential changes in the host transcriptional machinery and targets the immune system for immunosuppression and disease progression in Mtb infection.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Epigênese Genética , Tuberculose/tratamento farmacológico , Regulação da Expressão Gênica , Cromatina/metabolismo
3.
Paediatr Int Child Health ; : 1-3, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38571368

RESUMO

Tuberculosis is a leading cause of mortality in children worldwide. One of the greatest challenges in its management is the difficulty of diagnosis as the manifestations are non-specific and often mimic other illnesses. Neurological infection occurs in approximately 1% of patients diagnosed with tuberculosis, and usually takes the form of tuberculous meningitis or tuberculoma. An 11-year-old girl who was diagnosed with acute disseminated encephalomyelitis, a rare immunological manifestation of tuberculosis, is presented. She recovered completely after a course of high-dose systemic corticosteroids in addition to anti-tuberculosis treatment. Considering the immense burden of this infectious disease, recognition and understanding of the uncommon manifestations are important to enable appropriate and timely treatment.Abbreviations: ADEM: acute disseminated encephalomyelitis; ATT: anti-tuberculosis therapy; CBNAAT: cartridge-based nucleic acid amplification test; CNS: central nervous system; CSF: cerebrospinal fluid; CT: computed tomography; FLAIR: fluid attenuated inversion recovery; IFN: interferon; MRI: magnetic resonance imaging; MTB: Mycobacterium tuberculosis; TB: tuberculosis; TNF: tumour necrosis factor.

4.
Curr Pharm Des ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38638052

RESUMO

BACKGROUND: Friedreich's ataxia (FRDA) is a rare hereditary neurodegenerative disorder characterized by progressive ataxia, cardiomyopathy, and diabetes. The disease is caused by a deficiency of frataxin, a mitochondrial protein involved in iron-sulfur cluster synthesis and iron metabolism. OBJECTIVE: This review aims to summarize recent advances in the development of treatment strategies for FRDA, with a focus on potential drug candidates and their mechanisms of action. METHODS: A comprehensive literature search was conducted using various authentic scientific databases to identify studies published in the last decade that investigated potential treatment strategies for FRDA. The search terms used included "Friedreich's ataxia," "treatment," "drug candidates," and "mechanisms of action." RESULTS: To date, only one drug got approval from US-FDA in the year 2023; however, significant developments were achieved in FRDA-related research focusing on diverse therapeutic interventions that could potentially alleviate the symptoms of this disease. Several promising drug candidates have been identified for the treatment of FRDA, which target various aspects of frataxin deficiency and aim to restore frataxin levels, reduce oxidative stress, and improve mitochondrial function. Clinical trials have shown varying degrees of success, with some drugs demonstrating significant improvements in neurological function and quality of life in FRDA patients. CONCLUSION: While there has been significant progress in the development of treatment strategies for FRDA, further research is needed to optimize these approaches and identify the most effective and safe treatment options for patients. The integration of multiple therapeutic strategies may be necessary to achieve the best outcomes in FRDA management.

5.
J Radiol Prot ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38657574

RESUMO

Nuclear energy is crucial for achieving net-zero carbon emissions. A big challenge in the nuclear sector is ensuring the safety of radiation workers and the environment, while being cost-effective. Workplace monitoring is key to protecting workers from risks of ionising radiation. Traditional monitoring involves radiological surveillance via installed radiation monitors, continuously recording measurements like radiation fields and airborne particulate radioactivity concentrations, especially where sudden radiation changes could significantly impact workers. However, this approach struggles to detect incremental changes over a long period of time in the radiological measurements of the facility. To address this limitation, we propose abstracting a nuclear facility as a complex system. We then quantify the information complexity of the facility's radiological measurements using an entropic metric. Our findings indicate that the inferences and interpretations from our abstraction have a firm basis for interpretation and can enhance current workplace monitoring systems. We suggest the implementation of a radiological complexity-based alarm system to complement existing radiation level-based systems. The abstraction synthesized here is independent of the type of nuclear facility, and hence is a general approach to workplace monitoring at a nuclear facility.

6.
Bioorg Chem ; 147: 107337, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38626491

RESUMO

A convenient methodology for C-4 indole-ß-lactam hybrids with chloro, sulphur and seleno substitutions through dual site reactivity of indole-3-Schiff bases towards ketenes has been developed. The reaction proceeded in a stereospecific manner with the exclusive formation of trans-ß-lactams assigned with respect to C3-H and C4-H. The synthesized novel ß-lactams have been characterized with the help of elemental analysis (CHNS) and spectroscopic techniques viz.1H NMR, 13C NMR, DEPT 135, HSQC and IR. The trans configuration was further estabilished based on X-ray crystallographic data. Examination of antibacterial properties unveiled that only derivatives 5a and 5b, featuring chloro substitution, exhibited potent activities, underscoring the emergence of the recently coined term "magic chloro effect". Molecular docking analysis provided additional support for the observed in vitro antibacterial activities of compounds 5a-b.

7.
Top Curr Chem (Cham) ; 382(2): 12, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589598

RESUMO

Organoselenium compounds have been the subject of extensive research since the discovery of the biologically active compound ebselen. Ebselen has recently been found to show activity against the main protease of the virus responsible for COVID-19. Other organoselenium compounds are also well-known for their diverse biological activities, with such compounds exhibiting interesting physical properties relevant to the fields of electronics, materials, and polymer chemistry. In addition, the incorporation of selenium into various organic molecules has garnered significant attention due to the potential of selenium to enhance the biological activity of these molecules, particularly in conjunction with bioactive heterocycles. Iodine and iodine-based reagents play a prominent role in the synthesis of organoselenium compounds, being valued for their cost-effectiveness, non-toxicity, and ease of handling. These reagents efficiently selenylate a broad range of organic substrates, encompassing alkenes, alkynes, and cyclic, aromatic, and heterocyclic molecules. They serve as catalysts, additives, inducers, and oxidizing agents, facilitating the introduction of different functional groups at alternate positions in the molecules, thereby allowing for regioselective and stereoselective approaches. Specific iodine reagents and their combinations can be tailored to follow the desired reaction pathways. Here, we present a comprehensive review of the progress in the selenylation of organic molecules using iodine reagents over the past decade, with a focus on reaction patterns, solvent effects, heating, microwave, and ultrasonic conditions. Detailed discussions on mechanistic aspects, such as electrophilic, nucleophilic, radical, electrochemical, and ring expansion reactions via selenylation, multiselenylation, and difunctionalization, are included. The review also highlights the formation of various cyclic, heterocyclic, and heteroarenes resulting from the in situ generation of selenium intermediates, encompassing cyclic ketones, cyclic ethers, cyclic lactones, selenophenes, chromones, pyrazolines, pyrrolidines, piperidines, indolines, oxazolines, isooxazolines, lactones, dihydrofurans, and isoxazolidines. To enhance the reader's interest, the review is structured into different sections covering the selenylation of aliphatic sp2/sp carbon and cyclic sp2 carbon, and then is further subdivided into various heterocyclic molecules.


Assuntos
Iodo , Isoindóis , Compostos Organosselênicos , Selênio , Iodo/química , Indicadores e Reagentes , Compostos Organosselênicos/química , Lactonas/química , Carbono
8.
Artigo em Inglês | MEDLINE | ID: mdl-38530520

RESUMO

The glass manufacturing industry produces hazardous effluent that is difficult to manage and causes numerous environmental problems when disposed of in the open. In this study, an attempt was made to study the phytoremediation feasibility of water lettuce (Pistia stratiotes L.), a free-floating aquatic macrophyte, for the removal of six heavy metals from glass industry effluent (GIE) at varying concentrations (0, 25, 50, 75, and 100%). After a 40-day experiment, the results showed that 25% GIE dilution showed maximum removal of heavy metals i.e., Cu (91.74%), Cr (95.29%), Fe (86.47%), Mn (92.95%), Pb (87.10%), and Zn (91.34%), respectively. The bioaccumulation, translocation, and Pearson correlation studies showed that the amount of heavy metals absorbed by vegetative parts of P. stratiotes was significantly correlated with concentrations. The highest biomass production, chlorophyll content, relative growth rate, and biomass productivity were also noted in the 25% GIE treatment. Moreover, the multiple linear regression models developed for the prediction of heavy metal uptake by P. stratiotes also showed good performance in determining the impact of GIE properties. The models showed a high coefficient of determination (R2 > 0.99), low mean average normalizing error (MANE = 0.01), and high model efficiency (ME > 0.99) supporting the robustness of the developed equations. This study outlined an efficient method for the biological treatment of GIE using P. stratiotes to reduce risks associated with its unsafe disposal.

9.
Front Microbiol ; 15: 1321921, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505553

RESUMO

Onion purple blotch is the most indispensable foliar disease of crop and has become a major concern for farmers and research fraternity. An attempt to investigate the role of injury in parasitism by Alternaria porri indicated that disease incidence and severity enhance considerably with injury. Thrips injured plants inoculated with A. porri presented 100% incidence and 52-72% severity while mechanically injured plants inoculated with A. porri showed 60-70% incidence and 28-34% severity. The uninjured plants showed considerably less disease incidence (30-40%) and severity (10-16%). Injured inoculated plants presented reduced leaf length and leaf area while the leaf diameter remained unaffected. The lesion number, lesion length and size was substantially enhanced with concomitant infestation of pest and pathogen. Thrips tabaci injury led to more pronounced symptoms of purple blotch compared to Thrips parvispinus injury. There was substantial decrease in photosynthetic rate and chlorophyll content with stress imposed on plant whilst the relative stress injury was enhanced. The induction of injury and inoculation of A. porri had an impact on the concentration of total phenolics, total soluble sugars, total proteins and hydrogen peroxide in onion leaves. A. porri combined with injury caused a more pronounced decrease in total soluble sugars and total protein content while enhancement in total phenolics and hydrogen peroxide content compared to uninjured plants. The dynamic nature of morpho-physiological and biochemical changes owing to stress conditions imposed on onion plant adds an extra layer of complexity in understanding the onion plant physiology and their ability to work out in response to challenging environment conditions.

10.
Mol Biotechnol ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509332

RESUMO

Potato (Solanum tuberosum L.), an important horticultural crop is a member of the family Solanaceae and is mainly grown for consumption at global level. Starch, the principal component of tubers, is one of the significant elements for food and non-food-based applications. The genes associated with biosynthesis of starch have been investigated extensively over the last few decades. However, a complete regulation pathway of constituent of amylose and amylopectin are still not deeply explored. The current in-silico study of genes related to amylose and amylopectin synthesis and their genomic organization in potato is still lacking. In the current study, the nucleotide and amino acid arrangement in genome and twenty-two genes linked to starch biosynthesis pathway in potato were analysed. The genomic structure analysis was also performed to find out the structural pattern and phylogenetic relationship of genes. The genome mining and structure analysis identified ten specific motifs and phylogenetic analysis of starch biosynthesis genes divided them into three different clades on the basis of their functioning and phylogeny. Quantitative real-time PCR (qRT-PCR) of amylose biosynthesis pathway genes in three contrast genotypes revealed the down-gene expression that leads to identify potential cultivar for functional genomic approaches. These potential lines may help to achieve higher content of resistant starch.

11.
Nat Commun ; 15(1): 2667, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531839

RESUMO

Mutual conversion of various kinds of magnetohydrodynamic (MHD) waves can have profound impacts on wave propagation, energy transfer, and heating of the solar chromosphere and corona. Mode conversion occurs when an MHD wave travels through a region where the Alfvén and sound speeds are equal (e.g., a 3D magnetic null point). Here we report the direct extreme ultraviolet (EUV) imaging of mode conversion from a fast-mode to a slow-mode MHD wave near a 3D null point using Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) observations. An incident fast EUV wavefront associated with an adjacent eruptive flare propagates laterally through a neighboring pseudostreamer. Shortly after the passage of the fast EUV wave through the null point, a slow-mode wave appears near the null that propagates upward along the open structures and simultaneously downward along the separatrix encompassing the fan loops of the pseudostreamer base. These observations suggest the existence of mode conversion near 3D nulls in the solar corona, as predicted by theory and MHD simulations. Moreover, we observe decaying transverse oscillations in both the open and closed structures of the pseudostreamer, along with quasiperiodic type III radio bursts indicative of repetitive episodes of electron acceleration.

12.
Heliyon ; 10(5): e27138, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38455530

RESUMO

Irrigation of crops with domestic wastewater (DW) is a common practice in developing countries like India. However, domestic wastewater irrigation poses a risk of migration of toxic heavy metals to edible parts of crops, which requires serious measures to prevent their uptake. In this study, the effect of DW irrigation in comparison with Sarbal Lake water (SLW) and borewell water (BW) on soil characteristics and cultivated saffron (Crocus sativus L.) was investigated. For this purpose, samples of water, soil, and saffron (corm, petal, and stigma) were collected from the suburban area of Pampore, Srinagar district, Jammu and Kashmir, India. The results showed that DW irrigation had the maximum significant (p < 0.05) influence on the physico-chemical and nutrient characteristics of the soil, followed by SLW and BW irrigation, respectively. The growth and yield parameters of saffron were also significantly (p < 0.05) increased in the case of DW irrigation as compared to SLW and BW. The quality ranking of the cultivated saffron was found to be in accordance with the ISO standard (III: BW and II: DW and SLW). On the other hand, DW irrigation showed a significant increase in heavy metal contents (mg/kg) of saffron plant parts such as As (0.21-0.40), Cd (0.04-0.09), Cr (0.16-0.41), Cu (7.31-14. 75), Fe (142.38-303.15), Pb (0.18-0.31), Mn (15.26-22.81), Hg (0.18-0.25), Ni (0.74-1.18), Se (0.13-0.22), and Zn (3.44-4.59), followed by SLW and BW. However, the levels of heavy metals did not exceed the FAO/WHO safe limits. Bioaccumulation factor (BAF), dietary intake modeling (DIM<0.006496), health risk assessment (HRI<0.028571), and target hazard quotient (THQ<1) analyses showed no potential health hazard associated with the consumption of saffron irrigated with DW and SLW. Therefore, the results of this study provide valuable insights into the optimization of irrigation sources for saffron cultivation.

13.
Dalton Trans ; 53(14): 6173-6177, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38501600

RESUMO

In biology, nitrite (NO2-) serves as a storage pool of nitric oxide (NO); however, the formation of NO2- from NO is still under investigation. Here, we report the NO monooxygenation (NOM) reaction of a ZnII-hydroxide complex (1), producing a ZnII-nitrito complex {2, (ZnII-NO2-)} + H2.

14.
Nanomedicine (Lond) ; 19(10): 855-874, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38440976

RESUMO

Aims: This study was aimed to formulate erlotinib (ERL)-loaded transferosomal gel (ERL@TG) intended for topical application for the treatment of ductal carcinoma in situ. Materials & methods: The optimized process involved a thin-film hydration method to generate ERL-loaded transferosomes (ERL@TFS), which was incorporated into a carbopol gel matrix to generate ERL@TG. The optimized formulation was characterized in vitro followed by cytotoxicity evaluation on MCF-7 breast cancer cell lines and acute toxicity and skin irritation studies was performed in vivo. Results: In a comparative assessment against plain ERL, ERL@TG displayed enhanced efficacy against MCF-7 cell lines, reflected in considerably lower IC50 values with an enhanced safety profile. Conclusion: Optimized ERL@TG was identified as a promising avenue for addressing ductal carcinoma in situ breast cancer.


Despite progress, breast cancer remains a significant cause of death. This study aimed to revolutionize the treatment of noninvasive ductal carcinoma in situ, a type of breast cancer, by developing a special gel that can be applied directly to the breast. The developed gel was in the nanoform, a 'nanotransfersomal' gel that contained erlotinib, a potent drug for breast cancer. To ensure its effectiveness, we evaluated the erlotinib-loaded transfersomal gel through various tests. The results confirmed that the gel was nano-sized and loaded with a high amount of erlotinib. Animal studies were conducted to check if the prepared gel caused any skin irritation and interestingly, there was no irritation observed on the animals' skin. Furthermore, we treated breast cancer cells with the developed gel using a method called MTT assay and the results showed improved cell-killing activity in comparison to plain drug. In conclusion, this special gel represents a breakthrough in breast cancer treatment. It offers hope for better outcomes in the fight against this disease. This innovative approach involves directly applying the gel on the affected area topically to increase patient compliance and decreasing side effects of drugs. This could potentially transform ductal carcinoma in situ breast cancer treatment, bringing us closer to improved treatments and outcomes.


Assuntos
Neoplasias da Mama , Carcinoma Intraductal não Infiltrante , Humanos , Feminino , Cloridrato de Erlotinib/uso terapêutico , Linhagem Celular Tumoral , Lipossomos , Neoplasias da Mama/tratamento farmacológico
15.
J Mol Model ; 30(4): 99, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38462593

RESUMO

CONTEXT: The new equations have been developed for the structural and electronic properties using the plasmon calculations for the first time for 2-D MoX2 structures. Literature shows still an extensive study is required on the stability and optical properties of MoX2 under different hydrostatic pressures and thermal properties under different temperatures using the first principles, for electronic industrial applications. The stability is analyzed using binding energy and phonon calculations. The phase transition of metallization of MoX2 is discussed using band structure calculations under different hydrostatic pressures. The calculated work function shows the photoemission starts from the threshold frequency of 4.189×104 cm-1, 3.184×104 cm-1, and 3.651×104 cm-1, respectively, for MoS2, MoSe2, and MoTe2 materials. The optical properties such as refractive index n(0), and static dielectric permittivity ε(0) for three successive materials are calculated under different hydrostatic pressures, applicable for optoelectronic applications. The calculated theoretical and computational values agree well with each other and also agree with reported and experimental values. Some of the values are calculated for the first time. METHODS: The theoretical equations are derived using the molecular weight, effective valence electrons, and density of molecule of MoX2 structures. The simulation work is performed using GGA-PBE approximation in the CASTEP simulation package with DFT+D semi-empirical dispersion correction. An ultra-soft pseudopotential representation calculates the electronic and optical properties with a finite basis set kinetic energy cut-off of 381.0 eV. Each geometry has been optimized using Broyden, Fletcher, Goldfarb, and Shanno's (BFGS) algorithm for 100 iterations with a fixed basis quality variable cell method and finite electronic minimization parameters. The phonon calculations were performed using TDFT with a kinetic energy cut of 460 eV in a norm-conserving linear response method. The interpolation with a finite dispersion quality and q-vector grid spacing is performed.

16.
J Minim Invasive Surg ; 27(1): 51-54, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38494188

RESUMO

Gallbladder perforation with spillage of gallstones is not uncommon during laparoscopic cholecystectomy. Stone spillage can cause several complications. We report a case of recurrent discharging sinuses on the right back 4 years after laparoscopic cholecystectomy in a 44-year-old female patients. She suffered for 9 years to undergo empirical treatment for suspected tuberculosis, including repeated attempts at sinus tract excision done at different hospitals. We did a computed tomography sinogram, which revealed the tract extending from the right flank into a cavity in the right subpleural space. We proceeded with the sinus tract excision which extended between the tips of the 10th and 11th ribs, spreading to the right subpleural space where pus mixed with multiple gall stones were retrieved. Spilled stones may result in complications, making diagnosis difficult and seriously harming the patient physically, mentally, and economically. The need for accurate documentation and patient knowledge of missing gallstones cannot be understated.

17.
ACS Appl Energy Mater ; 7(4): 1421-1432, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38425380

RESUMO

An inorganic wide-bandgap hole transport layer (HTL), copper(I) thiocyanate (CuSCN), is employed in inorganic planar hydrothermally deposited Sb2S3 solar cells. With excellent hole transport properties and uniform compact morphology, the solution-processed CuSCN layer suppresses the leakage current and improves charge selectivity in an n-i-p-type solar cell structure. The device without the HTL (FTO/CdS/Sb2S3/Au) delivers a modest power conversion efficiency (PCE) of 1.54%, which increases to 2.46% with the introduction of CuSCN (FTO/CdS/Sb2S3/CuSCN/Au). This PCE is a significant improvement compared with the previous reports of planar Sb2S3 solar cells employing CuSCN. CuSCN is therefore a promising alternative to expensive and inherently unstable organic HTLs. In addition, CuSCN makes an excellent optically transparent (with average transmittance >90% in the visible region) and shunt-blocking HTL layer in pinhole-prone ultrathin (<100 nm) semitransparent absorber layers grown by green and facile hydrothermal deposition. A semitransparent device is fabricated using an ultrathin Au layer (∼10 nm) with a PCE of 2.13% and an average visible transmittance of 13.7%.

18.
J Neurosci Rural Pract ; 15(1): 53-61, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476434

RESUMO

Objectives: Open transforaminal lumbar interbody fusion (O-TLIF) remains the most popular and widely practiced lumbar fusion method even today, providing direct decompression. Oblique lateral interbody fusion (OLIF) is a novel retroperitoneal approach that allows placement of a large interbody cage which provides an indirect neural decompression, and screws can be placed minimal invasively or through the Wiltse OLIF (W-OLIF) approach. We aim to find out the short-term efficacy of W-OLIF to O-TLIF in terms of radiological and clinical outcomes in patients of lumbar degenerative diseases. Materials and Methods: Fifty-two patients were divided equally into two groups (group O-TLIF and group W-OLIF). Several parameters were measured, such as the spinal cord cross-sectional area (SC-CSA), foraminal cross-sectional area (F-CSA), disc height (DH), foraminal height (FH), Schizas grade for stenosis, and Meyerding's grading for olisthesis. Functional scores were measured using the visual analog scale (VAS) for low back pain (LBP) and lower limbs, Oswestry Disability Index. All parameters were repeat measured at 3 months follow-up. Statistical analysis was done using SPSS software. Results: Both groups were similar in composition preoperatively. There was significant improvement in all clinical and radiological parameters post-surgery in either group. However, at 3 months, The DH, FH, FSA, and VAS (LBP) were better in the W-OLIF group than in O-TLIF. Procedure-related complications were seen in both groups (15% in the O-TLIF group and 19% in the W-TLIF group), but only one patient in O-TLIF required revision due to cage migration. Conclusion: Similar improvement occurs in most of the clinical and radiological parameters in the W-OLIF group compared to the O-TLIF group. Few radiological parameters such as the DH, FH, and F-CSA and the VAS (LBP) correction are superior in the W-OLIF group in the short-term follow-up. We conclude that indirect decompression by W-OLIF provides equivalent, if not better, results than the traditional O-TLIF lumbar fusion.

19.
J Family Med Prim Care ; 13(1): 298-310, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38482279

RESUMO

Objective: This study sought to assess the prevalence of adverse events following immunization (AEFI) and factors associated with AEFI of the ChAdOx1 nCoV-19 vaccine (Covishield) among healthcare workers (HCW) of a medicine-teaching institution of North India. Materials and Methods: A cross-sectional study was conducted in the months of June and July 2021 among HCW (N = 203) of 18 years and above, vaccinated with at least the first dose of Covishield. A semi-structured, prevalidated, and pretested questionnaire was used to collect information through an interview schedule. The questionnaire was divided into five sections: the sociodemographic profile, behavioral characteristics, past medical history, COVID-19 awareness, and past infection and COVID-19 vaccine related information. Chi-squared test was applied to check the association of different factors with AEFI. Results: In our study, 73.89% of participants suffered from at least one AEFI after the first dose of the vaccine, while 48.66% had at least one AEFI after the second dose. Females reported significantly high AEFI for both doses (P = 0.001, 0.000). We found a significant association between the occurrence of AEFI and occupation (first dose P = 0.015), substance abuse (first dose P = 0.002), diet (first dose P = 0.016), and allergy (first dose P = 0.027). Other significant findings were headaches among HCW ≥40 years of age (dose P = 0.034) and systemic AEFI in participants with comorbidity (first dose P = 0.020). Conclusion: More AEFI were reported after the first dose as compared to the second dose. AEFI were more among females after both the doses. Occupation, substance use, diet, and history of allergy were significantly associated with AEFI.

20.
Artigo em Inglês | MEDLINE | ID: mdl-38468524

RESUMO

BACKGROUND: Aegle marmelos, an Indian plant, has been extensively utilized by the people of the Indian subcontinent over about 5000 years. The leaves, bark, roots, and fruits, including seeds, are widely used to cure a variety of diseases in the Indian traditional system of medicine, Ayurveda, along with numerous folk medicines. By revealing the existence of significant bioactive chemicals, modern research has effectively substantiated the therapeutic effects of bael. OBJECTIVE: The objective of this study was to review the literature regarding A. marmelos geographical distribution, morphology, therapeutic benefits, and phytochemicals found in the bael leaves, fruits, and other parts of the plant that offer a wide range of pharmacological applications in neurological disorders. METHODOLOGY: A thorough literature search was conducted using five computerized databases, such as PubMed, Google Scholar, ScienceDirect, Elsevier, and Wiley Online Library (WOL), by using standard keywords "A. marmelos," "Geographical distribution," "Morphological description," "Ethnobotanical Uses," "Phytoconstituents" and "Neuroprotective activities" for review papers published between 1975 and 2023. A small number of earlier review articles focused on phyto-pharmacological potential of Aegle marmelos (L.) for neurological disorders. RESULTS: According to some research, Aegle marmelos extracts potentially have neuroprotective benefits. This is due to its capacity to alter cellular mechanisms that cause neuronal damage. CONCLUSION: Neurodegenerative illnesses usually induce permanent neuronal network loss overall the brain along with the spinal cord (CNS), resulting in chronic functional impairments. The review summarizes the multiple aspects and processes of A. marmelos extract and its components in several models of neurodegenerative diseases such as anxiety, epilepsy, depression, Parkinson's disease, Alzheimer's disease, and others. MDA, nitrite, TNF-, and IL-6 levels were dramatically elevated, whereas glutathione levels were significantly lowered in the hippocampus of STZ-treated rats. Furthermore, STZ-treated rats showed a substantial drop in catalase activity and an increase in AChE activity, indicating cholinergic hypofunction and neuronal injury. The neuroprotective ability of A. marmelos against STZ-induced oxidative stress and cognitive loss in rats suggests that it has therapeutic relevance in Alzheimer's disease (AD).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...